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Abstract

During the High-Resolution Remote Sensing Main Experiment (1993), wave height was estimated
from a moving catamaran using pitch-rate and roll-rate sensors, a three-axis accelerometer, and a capacitive
wave wire. The wave spectrum in the frequency band ranging roughly from 0.08 Hz to 0.3 Hz was verified
by independent buoy measurements. To estimate the directional frequency spectrum from a wave-wire
array the Data-Adaptive Spectral Estimator is extended to include the Doppler-shifting effects of a moving
platform. The method is applied to data obtained from a fixed platform during the Risg Air-Sea Experiment
(1994), and data obtained from a moving platform during the Coastal Ocean Processes Experiment (1995).
Both results show that the propagation direction of the peak wind waves compares well with the measured
wind direction. When swells and local wind waves are not aligned, the method can resolve the difference
of propag‘ation directions. Using the fixed platform data a numerical test is conducted which shows that
the method is able to distinguish two wave systems propagating at the same frequency but in two different

directions.




1 Introduction

In the past several years research catamarans were used in various in situ measurements of small scale air-
sea interaction processes, including wind waves, atmospheric turbulence, subsurface turbulence, and surface
films [ Carlson et al., 1988 ; Bock and Frew, 1993 ; Hara et al., 1994 ; Bock et al., 1995 ]. Such platforms have
the advantage of having very low profiles, hence they generate little disturbance on processes of interest,
in contrast to traditional shipboard measurements. Furthermore, they do not contaminate surrounding
water surfaces as long as no oil-based engines are installed. This is an essential requirement for studies on
small-scale processes that are easily affected by the presence of surfactants. Examples of sensors mounted
on research catamarans include an acoustic anemometer, a (scanning) laser slope gauge to measure short
wind waves, a surface skimmer to measure surface enrichment, an acoustic current meter and a hot-film
anemometer to measure subsurface currents/turbulence.

In addition to measuring various processes independently, some of the recent efforts focus on the
interaction among different, physical/chemical processes at the air-sea interface. Examples include the effect
of gravity waves on gravity-capillary waves, and the coupling between surface gravity waves and near-surface
wind turbulence. These studies require simultaneous and collocated measurements of surface gravity waves
with other measurements of small scale processes. Although directional wind-wave spectra alone have been
measured successfully from a buoy [ Longuet-Higgins et al., 1963; Kats and Spevak, 1980 ] or from a fixed
i)latform [Donnelan et al., 1985], it is of great interest to achieve similar measurements from a research
catamaran in order to integrate the r;sults with other measurements.

Recently, Drennan et al. [1994] have demonstrated that it is possible to estimate directional wind-
wave spectra from a swath ship. First they apply the motion correction to the signals from a wave-wire
array mounted at the bow of the ship. They then apply the maximum likelihood method to estimate the
directional spreading of wave energy. Motivated by their study, we have attempted to obtain directional
wave spectra by combining signals from pitch-rate and roll-rate sensors, a three-axis accelerometer, and an
array of capacitive wave wires, all mounted on a research catamaran. Although the basic principle of our

data analysis scheme is similar to that in Drennan et al. [1994], 2 more careful motion correction scheme is




needed because the motion of the catamaran is substantially more affected by surface waves. In addition,
we have extended the Data-Adaptive Spectral Estimator (DASE) of Davis and Regier [1977 ] to estimate
the directional frequency spectrum of wind waves including the presence of Doppler shifting. This method
explicitly makes use of the dispersion relation of surface gravity waves and reduces the degrees of freedom
compared with the maximum likelihood method used in Drennan et al. [1994].

In section 2, we describe the motion correction to the wave-wire signals. The scheme is applied to
signals obtained during High-Resol:ltion Remote Sensing Main Experiment (Hi-Res 2) of 1993 in section 3.
The results are confirmed by comparison with independent buoy measurements of wind-wave spectra.

In section 4, we extend DASE to estimate the directional freqﬁency spectrum of surface gravity
waves including the presence of Doppler shifting. The scheme is first applied to data obtained during the
Risg Air-Sea Experiments (RASEX) of 1994 in section 5. In addition, numerical experiments are conducted
to investigate how. ‘the method can distinguish secondary waves which propagate in a different direction
from dominant waves. Finally in section 6, the method of motion correction and DASE are combined
to estimate directional wave spectra from a moving research catamaran, using data obtained during the

Coastal Ocean Processes Experiments (CoOP) of 1995.




2 Wave Height Measurement from a Moving Platform

In this section we describe a method of obtaining a true wave height signal by combining signals from a
motion detection package and a wave wire. Both instruments are mounted on a research catamaran which

is towed alongside a research vessel.

2.1 Coordinate systems

N

Two reference frames are used in Section 2. Since the instruments are mounted on a moving catamaran,
we define a frame fixed to the platform as the “rotating frame”, with the positive z, axis in the forward
direction and the positive y, axis pointing to port. The 2z, axis is defined to be along the unit vector
k, =i, x jr, where i, and jr are the unit vectors along the z, and y, axes, respectively, i.e. the positive
z, axis is upward. _The other coordinate system used for analyses is the “non-rotating frame” with axes
z¢, Ye, and z, defined by the long time mean (in terms of wave-induced motions) of the rotating-frame
axes. The mean water level is at z. = 0. The z., ¥, and z. axes are parallel to the unit vectors ic, jc,
and k., respectively. Time series for our analyses are selectea only if they do not contain large changes in
the speed and direction of the platform and in the mean current velocity. The non-rotating frame is then
approximately equivalent to a fixed reference moving with a constant velocity relative to the mean current
field. This criterion is verified by analyzing the velocity measured by the current meter. For the time series
z'malyzed, the standard deviations of the z, and y, components of the current-meter velocity are typically
0.1 ms~!, or about 15% of their mea.rlls. We may also characterize the non-rotating frame by analyzing the

roll, pitch, and yaw motions of the catamaran about the zc, v, and z. axes, respectively. The standard

deviations of these angles are about 4° for pitch and roll and 9° for yaw.

2.2 Characterization of wave height

The wave wires measure wave height relative to the moving catamaran. The catamaran motion is sensed

by the accelerometers and angular-rate sensors. These wave wire and motion package data are combined




to yield wave height relative to the mean sea surface, 7, according to the equation

1 = Nww + Mww—acc + Nace » (1)

where 7y (vertical component of Eww) is the sea surface height relative to the base of the wave wire,
Nww—ace (vertical component of Fww—ace) 15 the height of the base of the wave wire relative to the ac-
celerometers (which is negative), and 7cc is the height of the accelerometers relative to the mean sea
surface (see Figure 1). These heigﬁts are expressed in the non-rotating reference frame (z, ¥, 2.) defined
in Section 2.1.

Wave height is calculated using a multi-step procedure outlined in Figure 2. The 7y term in (1)
is given directly by the wave wire. The heights 7,w—acc and 7qcc depend on the pitch and roll angles § and
#. These angles are computed by integrating the pitch and roll rates measured by the angular-rate sensors.
The acceleration véctor measured by the accelerometers is then converted from the rotating frame to the
non-rotating frame using 6 and ¢. The vertical acceleration Z is integrated twice, resulting in the height
Nece, shown in Figure 1. The height fyw-qcc 1S the vertical component of the position vector 7y uw—acc from
the accelerometers to the base of the wave wires (see Figure 1). It is found by transfor.ming Fww—acc from

the rotating to the non-rotating frame using ¢ and ¢.

2.3 Transformation matrix

The accelerometer signals and the position vector fyw—ace are measured in the rotating frame (z,, yr, 2+).
These must be expressed in the non-rot.éting frame (z¢, ye, zc) to compu_te the heights 7scc and Nyw—ace-
A transformation matrix is used for this conversion. Consider a reference frame (z,y, z) which undergoes
three separate rotations about each of its own axes. In general, the final orientation of the frame depends
upon the order in which the axis rotations are made. For the case of rotation through angles 9, ¢, and ¢,

in‘that order, the transformation matrix

cosy —siny O cos@ 0 sinf 1 0 0
Tyep =] sinyy cosyp 0 0 1 0 0 cos¢ —sing (2)
0 0 1 —sinf 0 cosé 0 sing cos¢




relates the final orientation of the axes to the original orientation (Macomber and Fernandez, 1962). Note
that the angles 9, 6, and ¢ refer to rotation angles about the z, y, and z axes of the frame undergoing
rotation, where positive angles are described by the right-hand rule. The transformation matrix for any
alternate order of axis rotations is found throﬁgh rearrangement of the matrices on the right-hand side of (2).
However, when rotation angles are small, the transformation matrix becomes approximately independent

of the order of rotation. In this case, (2) becomes

] )
1 -y 0
Tim=| ¢ 1 —¢ | (3)
-0 ¢ 1

where the angles ¢, 8, and 9 are now to be expressed in radians. Equation (3) is used to convert from the
rotating frame (zr,%r, 2-) to the non-rotating frame (e, Ye, z¢). The rotating frame is equivalent to the

non-rotating frame when the latter is rotated through angles ¢, 8, and 9 about its axes.

2.4 Orientation angles

The angular-rate signals are first converted from voltage to angular rates in rad s~! using a linear calibration.
The angular-rate sensor signals contain “drift” error appearing as noise at low frgquencies. Thus, we
subtract the best-fit linear trend from each 10 minute time series. The trend was on average less than 0.5%
;of the standard deviation of the angleé with trend removed. The pitch, roll, and yaw angles 8, ¢, and ¢
are then computed from the rate sig;'zals_ using a numgric‘al integration scheme with third-order accuracy.

The form of this scheme for the general, discrete variable a; is given by

a; =a;—1 +

1. . 1. -3

where i is the index of the discrete a, @ represents the time-derivative of a, and fsamp is the sampling
; .

frequency. This is the Taylor series approximation with third-order accuracy, where the term & is replaced

with the central difference approximation (see e.g., Hornbeck, 1975 ).




2.5 Accelerometer height

The height of the accelerometers relative to the mean sea surface, Tgce, is estimated using the pitch and roll
angles. This calculation requires several steps. First, a linear calibration is applied to the voltage outputs
of the accelerometers, yielding acceleration signals :';:"ob, in m s~2. Next, a linear trend is removed from
each ten-minute signal. The average magnitude of this trend is 1% or less of the standard deviation of the
signal. The accelerometer signals are scaled for consistency with the magnitude of the gravity vector. The
scale factor is the ratio of 9.81 m s™2 to the ten-minute mean acceleration magnitude, and averages 0.965
+ 0.004.

The vertical acceleration in the non-rotating frame, Zacc, is computed using the accelerometer

signals, Zops, and the small-angle transformation matrix, according to

Eacc = (T:m-%obs) . kc . (5)
Substituting for T,m using (3) yields
Zgee = —0Zops + 4’?;;obs + Zobs » ) (6)

where Zobs, fobs, and Zops are the zr, yr, and z, components of Zops. The Z,cc signal is then integrated
twice in the time domain using the Taylor series approximation of (4), yielding the accelerometer height

Dace of (1). Prior to each integration, the linear trend over ten minutes is removed.

2.6 Tilt height

The pitch and roll angles are also used in the estimation of the tilt height Nyw—acc, the height of the base

of the wave wire relative to the accelerometer. This height is related t0 Fww—acc, the vector from the

-

accelerometer to the base of the wave wire, through the transformation matrix Tsm:

:

Nww—-acc = (Tsmew—acc) ke, (7)
where 7w —acc is @ fixed vector in the rotating frame. Equation (3), is used to simplify (7) to

Nww—acec = —0ZTyw—ace + ¢yww—acc + Zyw—acc » (8)




where Zyw—ace, Yww—aces 304 Zww—acc are the z-, yr, and z, components, respectively, of the column vector
Tww-—ccc-

2.7 Wave-wire height

The last unknown in the computation of sea-surface height given by (1) is the wave wire height nyy. Its

calculation is analogous to the tilt-height estimate of (7), and is given by
Nww = (Tsmﬁww) . ,;c - (9)

Here, Eww is the vector from the base of the wave wire to the intersection of the wire with the sea surface.
The multiplication is trivial since the only non-zero component of hyw is the z.-component, the wave wire

signal zyy. By substituting for Tsm using (3), (9) becomes

Nww = Zww - (10)




3 Application of Motion Correction Scheme

3.1 Overview of Hi-Res 2 Experiment

The main experiment of the High-Resolution Remote Sensing Program (Hi-Res 2) occurred in June of 1993
and was sponsored by the Office of Naval Research / Naval Research Laboratory. The principle objective
of the program was to investigate the accuracy of radar measurements of sub-mesoscale processes at the
ocean surface. The research ca.tar;la.ra.n was deployed as a means of obtaining in situ measurements of
gravity-capillary waves (using a scanning laser slope gauge), surface gravity waves (using a capacitive wave
wire, and a motion detection package), near-surface atmospheric turbulence (using a three-axis acoustic
anemometer mounted at' 5 m mean altitude) and sub-surface currents (using a three-axis acoustic Doppler
current meter at 1 m mean depth). The catamaran was towed to the side the R/V Iselin at a distance of
about 20 m in order to minimize effects due to the wind blockage and ship wake of the vessel. Data from
‘the wave wire and the motion detection package were recorded digitally.at a sampling rate of 20 Hz.

The location of the experiment was near the coast of Cape Hatteras, North Carolina. During the
experiment the position of the ship was recorded with an on-board GPS sensor. The two _main experimental
sites are shown in Figure 3 by large circles. One site near 36.6°N, 72.8°W was called “off-shore site”; the
other site was called “near-shore site”. Both sites were located in the vicinity of the Gulf Stream North wall
so that frontal features could be investigated. In the following section we only show results obtained in the
«pear-shore site”. Also shown in Figure 3 are the locations of two discus buoys (filled circles). These buoys
were deployed by a group led by Dr. Hans Graber of the Rosenstiel School of Marine and Atmospheric

Sciences at the University of Miami.

3.2 Results of wave height frequency spectra

Two examples of wave height frequency spectra, calculated using the method of Appendix A, are shown in
Figures 4 and 5. These spectra were computed using 161 s time blocks and total time series lengths of 121
and 90 minutes, respectively. The corresponding ship tracks are indicated in Figure 3. In Figures 4 and 5

the 95% confidence limits are shown as vertical bars. These limits describe the statistical stability of the
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spectral estimates, and are given approximately by

1 1
mcnn(f) < Cp(f) £ mcnn(f) ) (11)

where Cyy(f) and Cpy(f) are the true and estimated frequency spectra, and P is the number of time blocks
used in the spectral calculations. A more exact form of (11) is found by replacing P with the number of
degrees of freedom. Because overlapping time blocks are used in the spectral calculations, the exact number
of degrees of freedom is unknown but is within the range P/2 to P. |

Our frequency spectra may be compared to frequency spectra derived from the two discus buoys.
The spectrum from the buoy closest to the position of the catamaran is shown as a dashed line in Figures
4, and 5. The frequencies of the swell peaks (near 0.1 Hz) and the swell-peak spectral densities agree
reasonably well in both cases. In Figure 5 local wind-wave peaks near 0.2 Hz are indicated in both the
catamaran and buoy spectra. However, the wind-wave peak spectral levels are larger in the buoy spectra
than in the catamaran spectra by factors of about 2. This discrepancy may be partly attributable to the
differences in the location and in the time of the two measurements.

The catamaran spectra are affected by Doppler shifting. A simple means of a.ccognting for Doppler
shifting is to assume that the wave field is completely unidirectional and moves towards the catamaran
along its forward axis. This assumption represents the largest possible Doppler shift, from a given intrinsic
frequency f to the observed frequency f. The catamaran velocity relative to the mean current in the
forward direction uniquely determines the Doppler shifting of the waves. This velocity is calculated using
a long-term average of the current meter velocity along the z. axis. The ordinate of Chpy is converted from .

the observed frequency f to the intrinsic frequency f using the Doppler-shifted dispersion relation:

f= 22— (VixETmils -1) . (12)

4ﬂUobs

where g is the gravitational acceleration and U, is the speed of the catamaran relative to the mean
current. Furthermore, the Cop( f) values must be scaled so that the total wave energy remains the same

after the transformation of (12). This scale factor is 6 /4 f, where & f is the frequency resolﬁlion and 6f is

11




the intrinsic frequency resolution, defined by

g
47onbs

6f = (\/1 X 87000, +07/2)/9 — /1 + 87U0bs (f — 5f/2)/g> :

The results of Figures 4 and 5 (dotted lines) show that Doppler shifting is quite small for the frequency

bandwidth described.

3.3 Accuracy of wave height results

We have found that the region cbhsisting of frequencies less than about 0.08 Hz is contaminated by noise
from the z.-accelerometer. Near 0.5 Hz, there is error due to the resonant motion of the catamaran (see
Hanson [1996] for detailed analyses). We therefore focus on the region of the frequency spectrum from
roughly 0.08 Hz to 0.3 Hz, shown in Figures 4 and 5.

The voltage outputs of the accelerometers and angular-rate sensors are linearly proportional to the
quantities which they measure. They are accurate to within 3%, provided that the physical quantities do
not exceed the maximum measurement ranges of the instruments. Time series for which this occurred were
excluded from the analyses. The wave-wires outputs are also linear and accurate to. les_s than 1%.

The wave height result is derived by assuming that the catamaran orientation angles are small, so
that the transformation matrix of (3) may be used. The small-angle requirement is met for yaw angle by
selecting time series for analysis without large catamaran turns. The standard deviation of compass angle
was less than 10° for the spectra shown. The yaw angles had standard deviations similar to those of the
compass angles. The pitch and roll anglés were inspected after the wave height calculations. These aﬁgles
had standard deviations of less than 4°. The siie of the standard deviations of ¢, 8, and ¢ indicates that
the error resulting from the small-angle form of the transformation matrix is small.

We have examined the effect of the transformation matrix of (3), i.e. the tilt of the platform, on
the wave height result. To investigate this, we have computed z,, the height of the accelerometer in the
rotating frame of the catamaran. This calculation is identical to that for 7gce, with the exception that
the step given by (5) is omitted. This result is independent of the angles ¢ and §. We then compare

the autospectra of the accelerometer heights in the non-rotating and rotating frames. In typical cases,

12




the effect of the orientation angles increases with decreasing frequency and approaches about 10% of the

spectral value at f ~ 0.1 Hz, suggesting that the rotational correction is indeed necessary.

13




4 Estimation of Directional Frequency Spectrum

A wavenumber-frequency spectrum 5 (k, f) is calculated using the directional model discussed in this sec-
tion. This model generalizes the original Data-Adaptive Spectral Estimator (DASE) model of Davis and
Regier (1977) to allow the Doppler shifting caused by a moving platform. The reference frame used in the

following sections has positive z to the East, positive y to the North, and positive z upwards.

N

4.1 Doppler-shifted dispersion relation

First, we describe the selection of the discrete wavenumbers k at which we compute the wavenumber-fre-
quency spectrum.‘ This is performed with separate requirements on the wavenumber magnitude « and the
direction 0. The direction of k is discretized by using a constant spacing 86 = 2m/Nis, where Nig is an
integer. The wavenumber magnitudes K are related to the observed frequency f through the dispersion

relation for small-amplitude waves with Doppler shifting,

2rf = Vgx tanh(kH) — Ugps K cOS Oret - (13)

Here g is the gravitational acceleration, Uoss is the velocity of the observer relative to the mean current

field, and H is the water depth. The relative wave-observer angle B, is defined according to
9rel = 9k - eobs 3

where 0 is the direction of k and B,5; is the heading of the observer relative to the mean current field. For
convenience, we indicate the dispersion relation of (13) through the notation & = &(f, x).
The generalized DASE method requires solutions to the dispersion relation (13). We first consider

the special case of deep water. In this case, tanh(xH) ~ 1 and solutions to (13) are given by

1

202, cos? et

K

[(9 - 47rf;~Uobs cos orcl) + \@ — 8w fUobs cOS arel)] N . (14)

for cos0rer # 0. The trivial solution for cos 0.1 =01s

k= (2rf)g"". : (15)

14




Equations (14) and (15) present 5 solutions to the dispersion relation (13), listed below in order of increasing

« for fixed f.

ka (=) solution of (14) for cosfrer < 0. Approaching waves.
kp  Solution of (15) for cos 8 = 0. Waves moving perpendicularly.
krr (=) solution of (14) for cosbre >0 and f > 0. Long overtaking waves.
kst (+) solution of (14) for cosfer > 0 and f > 0. Short overtaking waves.
kr  (+) solution of (14) for cosfrer >0 and f < 0. Overrun waves.
- The notations (—) and (+) refer to the choice of sign in front of the radical in (14). Solutions for overrun
waves are found using negative frequencies f in (14). These five solutions are shown in Figure 6 for the
example Uyt = 0.8 ms™1.

The three smallest-wavenumber solutions, k4, kp, and krr, are shown in Figure 7 for Uops = 0.8
m s~} and G5 = 0°. Together, these solutions form closed curves in k-space for small f. The two largest-
wavenumber solutioné, kst and kg, correspond to waves with intrinsic frequencies much higher than the
observed frequency f. These solutions may be ignored in the directional analysis if they correspond to

waves with negligible energy compared to the other solutions.

The solution «rr is defined only for f and 8, satisfying
fCOSB,-e[ < f-‘)

where

: g
. = . 1
fo= g (16)

Thus, for frequencies f above f., there is a range of 0}e1 where no solution k1 exists. The curve corre-
sponding to f = 0.58 Hz in Figure 7 shows ;uch a case. For f > f., the ends of the curve given by xrT
attach to the solution of ks7. In practice, it is prudent to choose the observer yelc;city such that the waves
of interest, e.g. the dominant waves, have frequencies f < fe-

When there is no Doppler shifting U,ss = 0, the dispersion relation (13) becomes

grtanh(kH) = (27 f)% . . (17)

15




Solutions for x from (17) describe circles in k-space.

4.2 Theoretical background

Methods of estimating the propagation direction of waves generally utilize an approximation to the contin-

uous integral

S f) = (—21—) / : QE fe=Fidt, (18)

where S (E , ) is the wavenumber-frequency spectrum and C is the lag vector between two locations in space.
The term Q(C— , f) is the cross-spectrum between two height time series measured at locations separated
by lag (. The wavenumber k has magnitude k = 27/a and direction 6, where a is wavelength and 6 is
the wave propagation direction. The calculation of the wavenumber-frequency spectrl.lm applies to each
observed frequency f independently, and thus the dependence of all spectra on f is implied th.roughout
the following discussion. The angle 6 is measured in the .horizontal plane, is zero along the z axis, and
increases in the counterclockwise direction when viewed from above.

The cross-spectrum Q((-) is continuous in lag f But in practice, we estimate this quantity for
discrete lags using the method of Appendix A, yielding Q(f,,q). The discrete lag g:;,q is the vector from wave
‘wires p to ¢, i.e.

(:’q =%~ I, .

The cross-spectra are gvrouped in the matrix Q with elements qu = Q(Gq) Each of the diagdnal elements
Qpp for p = 1,2,...Nyy is the autospeétrum of wave height for the pth wave wire, and corresponds to
the frequency spectrum (;‘,,,, discussed in Section 3.2. Here, Ny is the number of wave wires. The best

- estimate of the frequency spectrum, Qa, is given by the average of the autospectra for the Ny, wave wires:

Z

ww

Qpp - (19)

1

- 1
Qa = —Nw-w. i
14

A simple approximation to (18) would be to replace Q(f) with the estimate Q and to formulate
an estimate of the differential df . However, given the sparse sampling in E—space, the finite area elements

corresponding to d( are poorly defined. We instead use a model in order to approximate (18). A general




model can be written as

NuwNuww

g(E) =h Z Z C'pq(E)qu ) (20)

q=1 p=1

where a,q is an element of a matrix a to be determined. The normalization factor h ensures that the energy
of Q, is conserved in forming the estimate S (E) and is discussed later. Next, we relate the model result
S(k) to the true spectrum S (k) of (18). We first write the true cross-spectrum Q(C) using the inverse of

(18), .
a@= [ shed, (21)

where we now use the wavenumber I. To the accuracy of the estimate qu, we may replace qu in (20)

with its true value, Q((pq), given in (21). This substitution yields

5(F) =h [ S@u(kbdl, | (22)
where
- - Nl.lllll N\le — ot
w(k,l) = apq(k)eCre (23)
g=1 p=1

The function [h w(l;, l )] acts as the window function relating the estimated wavenumber-frequency spectrum

to the true spectrum. This window must approximate a delta function centered on | = k. -

4.3 Fundamentals of the generalized DASE model

The means of selecting the matrix o variee from method to method. The DASE method of Davis and Regier
(1977) was chosen for two reasons. First, it is a data-adaptive method. This implies that « is selected with
reference to the data Q so that contributions to S(k) from ['# k are minimized. This is in contrast to a
priori methods, which attempt to minimize the sidelobe height of w(k, 1) without regard to Q. Second, the
DASE method constrains wave energy to lie on the dispersion curve & = (f,0). This dispersion reiation
is a strong physical restriction on waves. Other methods, such as the Maximum Likelihood method of
Capon (1969 ), require no dispersion relation and thus allow undesired freedom in the calculation of S(k).

Three constraints are applied in both the original and generalized DASE method:

17




1. The window w(l_c',l-‘) is non-negative.
2. Energy at a given frequency f is distributed along the dispersion relation k = «(f, 0k)-
3. The estimate S(k) of least error is chosen from a restricted set of solutions.

Constraint 1 is imposed by requiring that the matrix & be Hermitian, or equivalently,

a(F) =7 (B)y" (k) , (24)

~

where the superscripts T and * denote the matrix transpose and complex conjugate operations, respectively,

and

7=["/1 Y2 oo ‘YN..,‘.,] . (25)

The window w(k,[) of (23) may then be expressed as

w(k, ) = y(B)e T Dell)r™ (k) (26)
where ¢ is the row vector
€ = [ e—-irf\ e—!l‘fg e—ir'waw ] (27)
Equation (26) may be recast as
R oo T 7|
w(k [ = |7(k)c (z)l . (28)

This equation reveals that the window w(E,f) is non-negative, i.e. Constraint 1. This result is useful when

combined with (22) in that the estimate S(k) with least error corresponds to the minimum estimate.

4.4 Generalized DASE window constraint

The application of Constraint 2 differs in the original and generalized DASE methods. In the generalized
method, we require that the volume under the window w(k, 1) integrated over the region Ak must remain
constant with 8, for fixed f. The area Ak surrounds the point k in E—space, and is defined by the limits of

integration in the analytical form of Constraint 2. This form is given by

0x+00/2 Ay - _
/ / Aw(k, jdrdo, =1, (29)
] A

xk—A60[2 0
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where ) and 6; are the magnitude and direction of [, and Af is a constant angular width parameter specified

later. The limits of the radial integral are defined using the dispersion relation (13), according to

X =«x(f—06f/2,01)

A1 = K(f'*'é.f/z)ol)

, (30)

where & f is the frequency resolution. Constraint 2 is needed because the area Ak varies with 8y for fixed
f. This variation must be accounted for in the estimation of 5'(1:), which gives the spectral density per unit
frequency and per unit area in k-space.

For convenience, we recast (29) as

y(E)L(EyyT (k) =1, (31)
where L is a matrix with elements
. 0x+08/2 Ay
Lpg(k) = / / e rdrdo) . (32)
9x—008/2 I

In practice, we integrate (32) numerically using the trapezoidal rule, with 40 points across A and 20 points
in the radial direction X (see e.g., Hornbeck, 1975).

The choice for the angular width Af is arbitrary. We have tested the sensitivity of the results to its
value. For the case of three wave wires, we have found negligible difference in peak height, peak location,
and angular distribution of energy for values in the range 5° < A < 75°.

In the case without Doppler shifting, the radial integration limits of (32) are independent of 6, as
described by (17). In this case, the cons&.raint of (31) may.be compared to the constraint in the original
DASE method of Davis and Regier (1977). By neglecting the variation of I. (f;,q in the radial direction A,
we may derive an approximate form of (32):

- 8 +68/2

1 .
Lyg(k) = 5(x] ~ "(2))/ etlradp; (33)
2 0,—50/2

where

ko = k(f—6f/2,6k)

k1 = &(f +8£/2,61)
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The multiplication of the constant factor (k2 — x3)/2 by 86 gives the area of Ak. By multiplying (33) by
2k/(x? — k3), we obtain the constraint imposed in the original DASE method. Thus, the constraint of (31)
modifies the original DASE constraint to account for the radial thickness in k-space associated with the
dispersion & = &(f,0%). This thickness is due to the discrete nature of the observed frequencies f, and is

described by the boundaries given in (30).

4.5 DASE maximization*problem
Next, we write the expression for S(E) by combining (24) and (20), yielding
(k) = ky(F)Qy'T (F) - (35)

The minimization of S (E) is then equivalent to maximizing the ratio

y(F) = = = 7(';,L(.;):"TEE) . (36)
5B~ ABarT®

The task is now to maximize v under the condition

vyQy T =Ly T, . (37)

where dependence on k is now implied. However, this maximization problem is not tractable. Instead,

Constraint 3 is imposed by maximizing v subject to the condition:
vOyT =Ly'T . (38)
The cross-spectral matrix Q is square and inve;tible. Multiplying (38) by Q“l yields
vy'T = Q- Ly (39)

This is 2 standard eigenvalue problem involving the given matrix Q~'L. The wavenumber-frequency
spectrum is then

.

3(F) = h/vimas (k) (40)

where Vnge is the maximum eigenvalue.
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The final requirement we place on S (I:) is that the energy over the area in Iz—space corresponding

to a particular f must match the average autospectrum energy Q., ie.
Nie o R
> S(km)dAm = Qa , (41)
m=1

where m is the index of the discrete k for fixed f, Qq is given by (19), and dAn, is the area given by

0x+60/2 Xy
A = / / AdAd, (42)
s 8,—66/2 Ja

for a particular k = k,». Note that the area dA differs from the area in the integral of (32) in that 86 is the
angular resolution while Af is a model parameter. Combining (40) with (41) yields
h= y” Qa = . (43)
Zm=1 dAm/Vmaz(km)

The estimate S(k) is then obtained by substituting (43) into (40).

4.6 Calculation of the directional frequency spectrum

The result S obtained in the previous section is a three-dimensional wavenumber-frequency spectrum.
(Note that the f dependence has been omitted for simplicity.) The spectrum .§(E, f) is now converted to
the two-dimensional wavenumber spectrum .S"(E) according to

-~ — N - -

Sky=6fY Sk, f), (44)

j=1

where N -is the number of discrete fréque_:ncies f;. However, the DASE method distributes energy so that .
for a given k there is only one frequency bin fi which contributes non-zero energy. The relationship then

simplifies to
) =8fS(k, fi) - (45)

Now we may compute the directional frequency spectrum D( f, 6x). The wavenumber k is converted

to intrinsic frequency f using the dispersion relation for small-amplitude waves:

f = (2r)~'\/grtanh(xH) , (46)
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which simplifies in the deep-water case to
f= (27) "' /9K -

The directional frequency spectrum D( f,0k) is calculated via a conservation-of-energy constraint expressed

by

xdr 3'(k) = D(f,0:)df . (47)
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5 Application of Extended DASE Method

5.1 Overview of RASEX experiment

The Ris¢ Air-Sea Experiment (RASEX) was sponsored by the Office of Naval Research as part of the
Marine Boundary Layers Accelerated Research Initiative, and occurred in the Great Balt off the western
coast of Lolland, Denmark in the Spring and Fall of 1994 (see Figure 8). The data used for directional
analysis were acquired from a 48 m tower located in the near-shore waters. This tower was instrumented
with an extensive array of meteorological sensors. The minimum and maximum fetches at this location
were about 2 km and 70 km, and water depth was 3 to 4 m. The results discussed in Section 5.2 are from
an array of three capacitive wave wires extended from the tower at the water surface. These wires formed

the vertices of an equilateral triangle with sides of length 1 m.

5.2 Directional frequency spectra results

In this discussion, angles follow the meteorological convention, with zero northward and angle increasing
in the clockwise direction. Wind directions are reported by the angle from which wind blows, whereas
wave angles describe the direction towards which waves propagate. Wave-height frequency spectra from
the RASEX experiment were computed using 102 s time blocks and total time series lengths of 30 minutes.
Two directional séect-ra D( f,6x) for RASEX are shown in Figures 9 and 10. In both figures, wind-wave
peaks are shown to have angular locations closely aligned to the wind direction. The result of Figure 9

. corresponds to wind angle 8,, = 340°, wind speed Uy = 12 ms™!, g.nd the wind-wave peak is located at
f = 0.27 Hz and 6 =145°. Its peak value is D = 2.4 m?® Hz"! rad~!. About 5 hours later (Figure 10),
wind speed decreases to Uy =8 m s~!1, and the direction slightly shifts to 8, = 350°. Correspondingly,
the spectral peak moves to f = 0.28 Hz and 6 = 160°, and its peak value is reduced to D = 1.6 m® Hz™*
:rad=!. The difference between the wind and peak wave directions is 15°, and 10° for Figures 9 and lb,
respectively. Since the wind and peak-wave directions may differ slightly in the presence of variable fetch
(Donelan et al., 1985), as in RASEX, the observed correlations seem reasonable.

The accuracy of the directional method is undoubtedly a function of the ratio of wavelength to
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wave-wire spacing. The peaks found at 0.28 and 0.45 Hz correspond to wavelengths a = 2m/x of 17 and
8 m, respectively. The spacing between any two wires in the RASEX array is 1 m. Thus the ratios of
peak wavelength to wave-wire spacing are 17 and 8, and the directional method apparently performs well

throughout this range.

5.3 Numerical experiment

~

A test is conducted to investigate the performance of the directional method in resolving a secondary wave
peak with a different direction than that of dominant waves. We first synthesize wave-wire time series
which coﬁtain two different dominant wave systems, by combining two sets of experimental data taken 5
hours apart. Let (m,72,73) be the three wave-wire signals used in the calculation of the result of Figure
9, and let (17}, 75, m3) be the three wave-wire signals used for Figure 10. Note that these results have peak
directions about 15° apart. We form a new set of wave wire time series by combining these 2 sets according

to the relation

7 = N+ DS (43)

/
rms

where ¢ is a constant in the range 0 < ¢ < 1, and the indices m = 1, 2, and 3 correspond to the indices
n = 3, 1, and 2, respectively. We define the index of 7 so that it increases in the clockwise direction. Thus,
we have shifted the wave-wire data of the n’ set by 120° in the clockwise direction. The root-mean-square

heights 7rms and 7}, are defined according to

’ 1/2
3 N
ems = [y Do S 7))

e = [ S S 2]
where N is the number of discrete times t; used in the directional estimate. The ratio Jrms/Nems in (48)
scales the energy in the time series 7, to match that of 7m.

The directional frequem;y spectra of the 7/’ time series are computed for values of the constant ¢ of
0.33 and 1.0, with the results shown in Figures 11 and 12. Additionally, Figure 9 may be interpreted as the

¢ = 0 case. As c increases, the angular domains of the 0.3 and 0.1 m2 Hz~! rad~! contours increase in the

clockwise direction. Asymmetry is evident even at the ¢ = 0.33 level. Figure 12 should correspond to the
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sum of Figure 9 and Figure 10 (after rescaling) rotated by 120° if the time series 7 and 7' are uncorrelated,
which is true in this case. The true peaks due to 7 and 7’ should be located at about 145° and 280°,
respectively, while Figure 12 shows two peaks at about 160° and 255°. Despite the slightly decreased
angular separation between the two peaks in the latter case, the presence of two peaks in the ¢ =1 case
shows that the generalized DASE method is capable of resolving a bimodal spectrum with similar peak
energy and peak angles separated by 125°. Furthermore, the asymmetry of contours in the ¢ = 0.33 cases
indicates that the method is sensit;ve enough to respond to the presence of significantly smaller secondary

waves separated in angle from dominant waves. This allows the generalized DASE method to be used in

detecting the energy of reflected waves from the RASEX tower posts (Hare, 1995).
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6 Application of Motion Correction Scheme and Extended DASE

Method

In this section we combine the motion correction scheme discussed in Section 2 and the extended DASE
method developed in Section 4. Using signals obtained from a towed research catamaran during CoOP

experiment, directional wave spectra are estimated.

N

6.1 Overview of CoOP experiment

. The Coastal Ocean Processes (CoOP) experiment occurred in April/May of 1995, off the California coast,
and was sponsored by the National Science Foundation. The principle objective of the program was tp
investigate the role of various ocean surface processes on the air-sea gas exchange. The research catamaran
was towed to the side of the R/V New Horizon. Measurements of gravity-capillary waves, surface gra\}ity
wa.ves,-sub—surface currents/turbulence, and surface enrichment were made possible with the instrument
array aboard the catamaran. This array included a set of six capacitive wave wires, a motion detection
package, a three-axi~s acoustic Doppler current meter, a hot film anemometer, and a surface skimmer. The
motion detection package consisted of a three-axis translational accelerometer and a..three—axis angular-
rate sensor. Both the wave wire data and the motion detection package data were recorded digitally af. a
sampling rate of 100 Hz. The wind speed/direction, and the wind stress were obtained at the bow of the

ship using a sonic anemometer.

6.2 Directional frequency spectra results

The procedure for estimating the wave-height spectrum for CoOP was identical to the procedure used
during High-Res 2. Because no independent measurements of the wave-height spectrum were available, we
cannot validate the spectra for CoOP as we did for High-Res 2. In Figures 13 through 15, the results of
frequency spectra, directional frequency spectra, and normalized directional spreading are shown for three
cases. Wave-height frequency spectra for Figures 13-15 were computed using 102 s time blocks and total

time series of 39, 46, and 45 minutes, respectively. All measurements were performed in the vicinity of
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Santa Catalina Island, shown in Figures 16. The first two figures correspond to cases where wind and swells
are aligned. Figure 13 shows an example of well-developed swells and relatively low local wind waves under
weak wind. The directional spreading of swells (0.1-0.2 Hz) is narrower than wind waves (0.3-0.4 Hz) as
expected. On the other hand, the wave field in Figure 14 is mostly local wind waves generated by strong
wind. The low level of swells may be partially due to the sheltering effect of the island. In both figures,
the directions of local wind waves are consistent with the observed wind directions.

An example is shown, in ;“igur&s 15, where swells and local wind waves are not aligned. In this
case, the wind speed is relatively low and both wind speed and wind directiofl are rather variable. At swell
frequencies (0.1-0.2 Hz) the directional spreading is narrow and well-defined. At the highest frequency (0.4
Hz), the peak direction is roughly consistent with the local wind but the wave energy is more widely spread
in all directions. In between at 0.3 Hz, the wave field appears to be confused because of the presence of
both swells and local wind waves.

These examples demonstrate that the combination of our motion correction.scheme and the ex-
tended DASE method may successfully estimate directional wave spectra, inc]uding both swells and local

wind waves in the range of wave conditions encountered during CoOP. A more comprehensive analysis of

the accuracy of this method in a wider range of conditions is a topic for future research.
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7 Conclusion

We have developed a method to obtain directional spectra of surface gravity waves using a motion detection
package and a wave wire array, both mounted on a moving platform. The validity of the motion correction
scheme to the wave wire signals has been confirmed by comparison with independent buoy observations.
An improved method of computing the directional frequency spectrum has been derived by generalizing
the DASE method of Davis and Regier (1977) to allow for the motion of the observer relative to the wave
field. The applications of the method to two field data sets, one from a fixed platform, and the other from
a moving platform, have shown that the propagation direction of the dominant wind waves agree well with
the wind direction. Furthermore, the swell direction at lower frequencies can be resolved accurately even
if it is not aligned with local wind. A numerical test with the fixed platform data demonstrates sufficient
sensitivity of the model to detect the presence of secondary waves propagating at different incidence angles
than those of dominant waves.

The directional wave information obtained in this study can be directly correlated with other
collocated physical measurements of atmospheric turbulence, short wind waves, and subsurface turbulence
in order to address d‘etailed interaction between various air-sea interaction processes and surface gravity
waves. Currvently, we are using the directional spectra of wind waves in a study of their modulation of

shorter gravity-capillary waves.
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Appendix A: Estimation of Frequency Spectra

The Welch method is a standard means of computing cross-spectra, and utilizes overlapping time blocks

and non-rectangular data windows (Marple, 1987). The Welch estimate of the cross-spectrum is given by

, |
Cualfe) = 5 2 Kol DX ) (49)

p=1

where * denotes the complex conjugate operation, the summation is over P time blocks, each of duration
T, and X; and X, are the Fourier transforms of the time signals z,(t) and z2(t). If z2(t) = z1(2) then
the result 011( fx) is the autospectrum of z1(t). The constant p is described shortly. The discrete, finite

Fourier transforms (DFT’s) X1(f,p) and Xa(fk,p) are given by the general relation

N-1
X(fx) = 7 1 - Z z(tn)w(tn)e-"“""/N , (50)
sam n=0

where N is the number of discrete points in the time block, fsamp is the sampling frequency in Hz, and

z(t,) is the discrete time series. The discrete frequencies f are given by
fe = foampk/N with k=0,1,...,N—1. (51)

- In practice, the DFT’s are computed using the fast Fourier algorithm (see e.g., Bendat and Piersol, 1986 ).

We have generally chosen w(t,) to be the Hann window (Marple, 1987):

wh(t,) = cos? (ﬂzz_—_(]é\l':—_ll_)_/z) . (52)

This window has smaller sidelobes thAan those of the simple rectangular window wr(tn) = 1. Sidelobes are
a phenomenon of discrete Fourier ana‘lysis pa.using the power at one frequency to be spread to neighboring
frequencies. Although the Hann window has smaller side lobes than the rectangular window, it has a
slightly wider mainlobe peak. This mainlobe width determines the effective resolution of the spectrum.
The rectangular window has an effective mainlobe width equal to the frequency spacing of (51), or 6f =
fi = fsamp/N. For the Hann window, this resolution is 1.5 f.

The constant p in (49) compensates for the loss in total energy of the time signal z(t,) due to the

windowing operation. It is defined for all windows by

N-1

B Y wlta) - (53)

n=0
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For the Hann window, p = 0.37.

The use of overlapping time blocks in the calculation of C12(fx) increases P and therefore the
statistical stability of the estimate. It is justified by the form of the Hann window. Consider two successive
time blocks of length N. Signals near their common edge are damped heavily by Hann window values close
to zero, as shown by (52), with n approaching 0 or N — 1. Thus their contribution to the DFT of (50) is
small. In an overlapping block centered on this edge, these oscillations are windowed with wj (t,) close to
1, and will make a significant contr\ibution to the DFT. The sum of the window values wj(t,) of one block

and the values of the 2 overlapping windows is in fact identically equal to 1. Thus, only the first and last

N/2 points of the entire time series are underutilized.
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Figure Captions

Figure 1: Schematic showing wave height estimation from the research catamaran.

Figure 2: Flow chart of the wave-height estimation procedure.

Figure 3: The location of the High-Res 2 experiment, near the barrier islands of North Carolina. Ship
locations are shown as crosses. The East and West discus buoys are indicated by filled circles. The average
location of the Gulf Stream North wall is shown.

Figure 4: High-Res 2 wave-height f;equency spectrum for Julian day 171 from 15:10 to 17:11 GMT (P =60
time blocks). u, = 0.2l ms~! and Ujp = 6.4 m s~1. Solid: without Doppler shifting correction. Dotted:
with unidirectional Doppler shifting correction. Dashed: West discus buoy spectrum at 16:00 GMT.
Figure 5: High-Res 2 wave-height frequency spectrum for Julian day 173 from 19:18 to 20:48 GMT (P =45
* time blocks). u. = 0.24 m s~! and Uyo = 8.0 m s~!. Solid: without Doppler shifting correction. Dotted:
with unidirectional Doppler shifting correction. Dashed: East discus buoy spectrum at 20:00 GMT.
Figure 6: Solutions to the Doppler-shifted dispersion relation (13) for deep water and Ueps = 0.8 m s7L.
Dotted lines show the case of f = 0.2 Hz. The « solutions for f = £0.2 Hz are given by equations (14)
and (15).

Figure 7: ka, £p, and xp7 solutions to the Doppler-shifted dispersion relation (13) for deep water and
fixed f of 0.29, 0.38, 0.48, and 0.58 Hz. Wavenumber magnitude « increases in the radial direction and
- propagation direction 0y increases in the counterclockwise direction from the positive z axis. Uops = 0.8 m
s™1, Bops = 0°. Together the three solutions form a closed loop only for f < f. = 0.49 Hz.

Figure 8: The location of the RASEX ex{:eriment, near the coast of Denrr.lark. The research tower shown
was outfitted with an array of three wave wires.

Figure 9: RASEX wave-height spectral estimates for Julian day 121 from 5:52 to 6:22 GMT (P = 34 time
blocks). (a) Frequency spectrum in m? Hz~!. (b) Directional frequency spectrum, with intrinsic frequency
(scale shown on axes) in the radial direction and wave propagation angle (North upwards, East to the right)
in the tangential direction. Contour labels are in units of m2 Hz~! rad~! and adjacent contours have ratio
10Y/2. Arrow represents wind direction; wind speed is 12 m s7L.

Figure 10: RASEX wave-height spectral estimates, as in Figure 9, but for Julian day 121 from 10:35 to
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11:05 GMT (P = 34 time blocks). Wind speed is 8 ms™".

Figure 11: Test of the angular resolution of the DASE method (P = 34 time blocks). Spectral estimates of
1 in equation (48), with ¢ = 0.33. Parts (2) and (b) as in Figure 9.

Figure 12: Test of the angular resolution of the DASE method (P = 34 time blocks). Spectral estimates of
1" in equation (48), with ¢ = 1.0. Parts (a) and (b) as in Figure 9.

Figure 13: CoOP wave-height spectral estimates for Julian day 132 from 15:46 to 16:25 GMT (P = 43
time blocks). (a) Frequency spect;um in m2 Hz~!. Solid line: intrinsic frequency, dotted line: observed
frequency. (b) Directional frequency spectrum, with igtrinsic frequency (scale shown on axes) in the
radial direction and wave propagation angle (North upwards, East to the right) in the tangential direction.
Contour labels are in units of m? Hz~! rad~! and adjacent contours have ratio 10%/2. Arrow represents
wind direction; wind speed is 4.5 m s~!. (c) Normalized directional spreading at different frequencies. Solid
line: 0.1 Hz; dotted line: 0.2 Hz; dashed line: 0.3 Hz; dash-dot line: 0.4 Hz.

Figure 14: CoOP wave-height spectral estimates for Julian day 133 from 18:44 to 19:30 GMT (P = 52
time blocks). (a) Frequency spectrum in m?2 Hz~!. Solid line: intrinsic frequency, dotted line: observed
frequency. (b) Directional frequency spectrum, with intrinsic frequency (scale shown on axes) in the
radial direction and wave propagation angle (North upwards, East to the right) in the tangential direction.
Contour labels are in units of m? Hz~! rad~! and adjacent contours have ratio 10%/2. Arrow represents
wind direction; wind speed is 9 m s~!. (c) Normalized directional spreading at different frequencies. Solid
line: 0.1 Hz; dotted line: 0.2 Hz; dashed line: 0.3 Hz; dash-dot line: 0.4 Hz.

Figure 15: CoOP wave-height spectral eétimates for Julian day 131 from 04:09 to 04:54 GMT (P = 51.
time blocks). (a) Frequency spectrum in m? Hz~!. Solid line: intrinsic frequency, dotted line: observed
frequency. (b) Directional frequency spectrum, with intrinsic frequency (scale shown on axes) in the
radial direction and wave propagation angle (North upwards, East to the right) in the tangential direction.
Contour labels are in units of m? Hz~! rad~! and adjacent contours have ratio 1012, Arrow represents
wind direction; wind speed is 4 m s~!. (c) Normalized directional spreading at different frequencies. Solid
line: 0.1 Hz; dotted line: 0.2 Hz; dashed line: 0.3 Hz; dash-dot line: 0.4 Hz.

Figure 16: The location of the CoOP wave measurements of this study, near Santa Catalina Island.
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